

Programs and Recursive Functions

Church’s Thesis

· Collection of functions computed by an algorithm is the same as that computed by a Turing Machine

· Computer programs look like algorithm. Hence functions computed by computer is same as that by Turing Machine.

· Implemented by Universal Turing Machine

   Complexity Classes

    P Problem

· Number of steps is bounded by a polynomial.

· Produce correct answer for any input string of length n in at most nk steps, where k is s constant independent of n.

e.g., Merge sort, Quick sort etc.

NP Problem

· Verifiable in polynomial time by a nondeterministic Turing machine. (A non deterministic Turing machine is a "parallel" Turing machine which can take many computational paths simultaneously, with the restriction that the parallel Turing machines cannot communicate.) 

· A P-problem is always also NP. If a problem is known to be NP, and a solution to the problem is somehow known, then demonstrating the correctness of the solution can always be reduced to a single P verification. 

· If P and NP are not equivalent, then the solution of NP-problems requires (in the worst case) an exhaustive search. 

NP- hard

· An algorithm for solving the problem can be translated into one for solving any other NP-problem.

NP-Complete

· A problem which is both NP and NP-hard.

· Hardest of NP problems.

NP Complete Examples

1. Circuit Satisfiability

Given a Boolean combinational circuit composed of AND, OR and NOT gates, is the circuit satisfiable (output is 1).

CIRCUIT-SAT = { <C> : C is a satisfiable boolean combinational circuit.>


[image: image1.png]
The above problem cannot be solved in polynomial time but can be verified. Hence it belong to NP category.

2. Formula Satisfiablility

· Given a boolean formula circuit, is the formula satisfiable (output is 1).

· Given right certificates, can be verified in polynomial time. Hence problem is NP.

· To prove this to be NP-complete, reduce CIRCUIT-SAT to this. CIRCUIT-SAT 
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p FORMULA-SAT

Steps

i. Name all output lines.
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ii. Find AND of all output lines.
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3. 3 CNF Satisfiability

· Given a boolean formula is in CNF, if it ie expressed as an AND of clauses, each of which is the OR of one or more literals. A boolean formula is in 3-CNF, if each clause has exactly three literals. And satisfiable if output is 1.

· Given right certificates, can be verified in polynomial time. Hence problem is NP.

· To prove this to be NP-complete, reduce FORMULA-SAT to this. FORMULA-SAT 
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p 3-CNF-SAT

Steps
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[image: image28.wmf]®

x2) 
[image: image29.wmf]Ú



 EMBED MathType 5.0 Equation [image: image30.wmf]Ø

((
[image: image31.wmf]Ø

x1
[image: image32.wmf]«

x3)
[image: image33.wmf]Ú

x4))
[image: image34.wmf]Ù



 EMBED MathType 5.0 Equation [image: image35.wmf]Ø

x2

i. Create parse tree
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ii. Create truth table

Find the truth value for each output line. For example, truth value for the first line can be written as


1’ = y1 
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Applying de Morgan’s law

1’’’ = (
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Similarly find all i’’’s and find the AND of all i’’’s.

iii. If all clauses has three distinct literals, select all.  Else

a. If all clause contain two distinct literal, introduce new literal p. Add two more clauses 


(l1 
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b. If all clause contain only one literal, introduce two new literals p and q. Add four more clauses 
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4. Clique problem

· Clique in an undirected graph G = (V, E) is a subset V’ 
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 V of vertices, each pair of which is connected by an edge in E. In other words, a clique is a complete graph. The size of a clique is the number of vertices it contains. The clique problem is the optimization problem of finding a clique of maximum size in a given graph.

· CLIQUE = { <G, k> : G is a graph with a clique of size k }

· To prove this to be NP-complete, reduce 3-CNF-SAT to this. 3-CNF-SAT 
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CLIQUE.

Steps

 = ( x1 
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   x1 =  0,  x2 = 0,  x3 =1

i. Let  be a Boolean expression with k clauses. Construct a graph G such that  is satisfiable if and only if graph has a clique of size k.

ii. Graph can be constructed as 

a. For each clause Cr = (l1r 
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 l2r 
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 l3r) in , place a triple of vertices v1r, v2r , v3r into V. Put an edge between two vertices if both of the following hold.

· vir and vjr are in different triples, that is, r
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s, and 

· their corresponding literals are consistent, that is, lir  is not the negation of ljs


[image: image110.png]
iii. Each Cr contains at least one literal lir  that is assigned a, each such literal corresponds to vertex vir. Pick one such literal from each clause yields a set V’ of k vertices.

5. Vertex cover problem

· Vertex cover in an undirected graph G = (V, E) is a subset V’ 
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 V such that if (u,v) 
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 V’,    then u 
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 V’ or v 
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 V’ or both. The clique vertex cover problem is to find a vertex cover of minimum size in a given graph.

· VERTEX-COVER = { <G, k> : G has a vertex cover of size k }

· To prove this to be NP-complete, reduce 3- CLIQUE  to this. Reduce CLIQUE 
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 VERTEX-COVER

Steps

i. Given G = (V, E), V’ 
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 V where V’ is a clique.

ii. Find complement of G, G’ = (V,
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), where 
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 = {(u,v) : u,v 
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 V, u 
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v and (u,v) 
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 E }

as graph formed by all edges not in G

iii. Take an edge (u,v) in G’. Either u or v or both are not present in V’. Hence vertices not present in V’ form cover of G’.
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6. Subset sum Problem

· Finding what subset of a list of integers has a given sum
.

· SUBSET-SET SUM = { <s,t> :  there exists a subset S’
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 S such that t = 
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· Reduce 3-CNF-SAT 
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 SUBSET-SUM

Assumptions

1. No clasuse contains variable and its completment ( xi and 
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)

2. Include all variables in every clause


e.g. Given a 3-CNF-SAT equation 


 = (x1 
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Steps

1. Add 2 numbers for each varioables and clauses.

2. Form numbers consisting of n+k digits, where n is the number of varioables and k is the number of clauses

3. Form target as a number of the form 111…444…. Where number of 1’s equal to number of variables and number of 4’s eqaul to number of clauses.

Table created for  is given below.


x1
x2
x3
c1
c2
c3
c4

v1
1
0
0
1
0
0
1

v1'
1
0
0
1
1
1
1

v2
0
1
0
0
0
0
1

v2'
0
1
0
1
1
1
0

v3
0
0
1
0
0
1
1

v3'
0
0
1
1
1
0
0

S1
0
0
0
1
0
0
0

S1'
0
0
0
2
0
0
0

S2
0
0
0
0
1
0
0

S2'
0
0
0
0
2
0
0

S3
0
0
0
0
0
1
0

S3'
0
0
0
0
0
2
0

S4
0
0
0
0
0
0
1

S4'
0
0
0
0
0
0
2

Target
1
1
1
4
4
4
4

S’ can be created as :

1. If xi = 1 pick vi else vi’. 

In above example select v1’, v2’, v3.

They will add 1’s to digit corresponding to variables and maximum of 3 to digits corresponding to variables.

2. Select appropriate slack Si’s to make sum as 4 for clauses.

In above example select S1, S1’, S2, S2’, S3, S4, S4’. 

Hence we have S’ = { v1’, v2’, v3, S1, S1’, S2, S2’, S3, S4, S4’}


So we proved that we can reduce 3-CNF-SAT to Subset-Sum problem.         

But 3-CNF-SAT is NP-Complete hence Subset-Sum problem is also NP-Complete.
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