

Programs and Recursive Functions

Church’s Thesis

· Collection of functions computed by an algorithm is the same as that computed by a Turing Machine

· Computer programs look like algorithm. Hence functions computed by computer is same as that by Turing Machine.

· Implemented by Universal Turing Machine

 Complexity Classes

 P Problem

· Number of steps is bounded by a polynomial.

· Produce correct answer for any input string of length n in at most nk steps, where k is s constant independent of n.

e.g., Merge sort, Quick sort etc.

NP Problem

· Verifiable in polynomial time by a nondeterministic Turing machine. (A non deterministic Turing machine is a "parallel" Turing machine which can take many computational paths simultaneously, with the restriction that the parallel Turing machines cannot communicate.)

· A P-problem is always also NP. If a problem is known to be NP, and a solution to the problem is somehow known, then demonstrating the correctness of the solution can always be reduced to a single P verification.

· If P and NP are not equivalent, then the solution of NP-problems requires (in the worst case) an exhaustive search.

NP- hard

· An algorithm for solving the problem can be translated into one for solving any other NP-problem.

NP-Complete

· A problem which is both NP and NP-hard.

· Hardest of NP problems.

NP Complete Examples

1. Circuit Satisfiability

Given a Boolean combinational circuit composed of AND, OR and NOT gates, is the circuit satisfiable (output is 1).

CIRCUIT-SAT = { <C> : C is a satisfiable boolean combinational circuit.>

[image: image1.png]
The above problem cannot be solved in polynomial time but can be verified. Hence it belong to NP category.

2. Formula Satisfiablility

· Given a boolean formula circuit, is the formula satisfiable (output is 1).

· Given right certificates, can be verified in polynomial time. Hence problem is NP.

· To prove this to be NP-complete, reduce CIRCUIT-SAT to this. CIRCUIT-SAT
[image: image2.wmf]£

p FORMULA-SAT

Steps

i. Name all output lines.

[image: image3.png]
ii. Find AND of all output lines.

 = x10 of
[image: image4.wmf]Ù

 (x4
[image: image5.wmf]«

 EMBED MathType 5.0 Equation [image: image6.wmf]Ø

x3)

[image: image7.wmf]Ù

 (x5
[image: image8.wmf]«

 (x1
[image: image9.wmf]Ú

x2))

[image: image10.wmf]Ù

 (x6
[image: image11.wmf]«

 EMBED MathType 5.0 Equation [image: image12.wmf]Ø

x4)

[image: image13.wmf]Ù

 (x7
[image: image14.wmf]«

 (x1
[image: image15.wmf]Ù

x2
[image: image16.wmf]Ù

 x4))

[image: image17.wmf]Ù

 (x8
[image: image18.wmf]«

 (x5
[image: image19.wmf]Ú

x6))

[image: image20.wmf]Ù

 (x9
[image: image21.wmf]«

 (x6
[image: image22.wmf]Ú

x7))

[image: image23.wmf]Ù

 (x10
[image: image24.wmf]«

 (x7
[image: image25.wmf]Ù

x8
[image: image26.wmf]Ù

 x9))

3. 3 CNF Satisfiability

· Given a boolean formula is in CNF, if it ie expressed as an AND of clauses, each of which is the OR of one or more literals. A boolean formula is in 3-CNF, if each clause has exactly three literals. And satisfiable if output is 1.

· Given right certificates, can be verified in polynomial time. Hence problem is NP.

· To prove this to be NP-complete, reduce FORMULA-SAT to this. FORMULA-SAT
[image: image27.wmf]£

p 3-CNF-SAT

Steps

 = ((x1
[image: image28.wmf]®

x2)
[image: image29.wmf]Ú

 EMBED MathType 5.0 Equation [image: image30.wmf]Ø

((
[image: image31.wmf]Ø

x1
[image: image32.wmf]«

x3)
[image: image33.wmf]Ú

x4))
[image: image34.wmf]Ù

 EMBED MathType 5.0 Equation [image: image35.wmf]Ø

x2

i. Create parse tree

[image: image36.png]
ii. Create truth table

Find the truth value for each output line. For example, truth value for the first line can be written as

1’ = y1
[image: image37.wmf]«

 (y2
[image: image38.wmf]Ú

 EMBED MathType 5.0 Equation [image: image39.wmf]Ø

x2)

y1
y2
x2
y1
[image: image40.wmf]«

 (y2
[image: image41.wmf]Ú

 EMBED MathType 5.0 Equation [image: image42.wmf]Ø

x2)

1
1
1
0

1
1
0
1

1
0
1
0

1
0
0
0

0
1
1
1

0
1
0
0

1
0
1
1

0
0
0
1

1’’ = (y1
[image: image43.wmf]Ù

y2
[image: image44.wmf]Ù

 x2)
[image: image45.wmf]Ú

 (y1
[image: image46.wmf]Ù

 EMBED MathType 5.0 Equation [image: image47.wmf]Ø

y2
[image: image48.wmf]Ù

 x2)
[image: image49.wmf]Ú

 (y1
[image: image50.wmf]Ù

 EMBED MathType 5.0 Equation [image: image51.wmf]Ø

y2
[image: image52.wmf]Ù

 EMBED MathType 5.0 Equation [image: image53.wmf]Ø

x2)
[image: image54.wmf]Ú

 (
[image: image55.wmf]Ø

y1
[image: image56.wmf]Ù

y2
[image: image57.wmf]Ù

 EMBED MathType 5.0 Equation [image: image58.wmf]Ø

x2)

Applying de Morgan’s law

1’’’ = (
[image: image59.wmf]Ø

y1
[image: image60.wmf]Ú

 EMBED MathType 5.0 Equation [image: image61.wmf]Ø

y2
[image: image62.wmf]Ú

 EMBED MathType 5.0 Equation [image: image63.wmf]Ø

x2)
[image: image64.wmf]Ù

 (
[image: image65.wmf]Ø

y1
[image: image66.wmf]Ú

y2
[image: image67.wmf]Ú

[image: image68.wmf]Ø

x2)
[image: image69.wmf]Ù

 (
[image: image70.wmf]Ø

y1
[image: image71.wmf]Ú

y2
[image: image72.wmf]Ú

x2)
[image: image73.wmf]Ù

 (y1
[image: image74.wmf]Ú

 EMBED MathType 5.0 Equation [image: image75.wmf]Ø

y2
[image: image76.wmf]Ú

x2)

Similarly find all i’’’s and find the AND of all i’’’s.

iii. If all clauses has three distinct literals, select all. Else

a. If all clause contain two distinct literal, introduce new literal p. Add two more clauses

(l1
[image: image77.wmf]Ú

l2
[image: image78.wmf]Ú

p) and (l1
[image: image79.wmf]Ú

l2
[image: image80.wmf]Ú

 EMBED MathType 5.0 Equation [image: image81.wmf]Ø

p)

b. If all clause contain only one literal, introduce two new literals p and q. Add four more clauses

(l1
[image: image82.wmf]Ú

p
[image: image83.wmf]Ú

q), (l1
[image: image84.wmf]Ú

 EMBED MathType 5.0 Equation [image: image85.wmf]Ø

p
[image: image86.wmf]Ú

q), (l1
[image: image87.wmf]Ú

p
[image: image88.wmf]Ú

 EMBED MathType 5.0 Equation [image: image89.wmf]Ø

q)and (l1
[image: image90.wmf]Ú

 EMBED MathType 5.0 Equation [image: image91.wmf]Ø

p
[image: image92.wmf]Ú

 EMBED MathType 5.0 Equation [image: image93.wmf]Ø

q)

4. Clique problem

· Clique in an undirected graph G = (V, E) is a subset V’
[image: image94.wmf]Í

 V of vertices, each pair of which is connected by an edge in E. In other words, a clique is a complete graph. The size of a clique is the number of vertices it contains. The clique problem is the optimization problem of finding a clique of maximum size in a given graph.

· CLIQUE = { <G, k> : G is a graph with a clique of size k }

· To prove this to be NP-complete, reduce 3-CNF-SAT to this. 3-CNF-SAT
[image: image95.wmf]£

CLIQUE.

Steps

 = (x1
[image: image96.wmf]Ú

 EMBED MathType 5.0 Equation [image: image97.wmf]Ø

x2
[image: image98.wmf]Ú

 EMBED MathType 5.0 Equation [image: image99.wmf]Ø

x3)
[image: image100.wmf]Ù

 (
[image: image101.wmf]Ø

x1
[image: image102.wmf]Ú

x2
[image: image103.wmf]Ú

 x3)
[image: image104.wmf]Ù

 (x1
[image: image105.wmf]Ú

x2
[image: image106.wmf]Ú

x3)
 x1 = 0, x2 = 0, x3 =1

i. Let be a Boolean expression with k clauses. Construct a graph G such that is satisfiable if and only if graph has a clique of size k.

ii. Graph can be constructed as

a. For each clause Cr = (l1r
[image: image107.wmf]Ú

 l2r
[image: image108.wmf]Ú

 l3r) in , place a triple of vertices v1r, v2r , v3r into V. Put an edge between two vertices if both of the following hold.

· vir and vjr are in different triples, that is, r
[image: image109.wmf]¹

s, and

· their corresponding literals are consistent, that is, lir is not the negation of ljs

[image: image110.png]
iii. Each Cr contains at least one literal lir that is assigned a, each such literal corresponds to vertex vir. Pick one such literal from each clause yields a set V’ of k vertices.

5. Vertex cover problem

· Vertex cover in an undirected graph G = (V, E) is a subset V’
[image: image111.wmf]Í

 V such that if (u,v)
[image: image112.wmf]Î

 V’, then u
[image: image113.wmf]Î

 V’ or v
[image: image114.wmf]Î

 V’ or both. The clique vertex cover problem is to find a vertex cover of minimum size in a given graph.

· VERTEX-COVER = { <G, k> : G has a vertex cover of size k }

· To prove this to be NP-complete, reduce 3- CLIQUE to this. Reduce CLIQUE
[image: image115.wmf]£

 VERTEX-COVER

Steps

i. Given G = (V, E), V’
[image: image116.wmf]Í

 V where V’ is a clique.

ii. Find complement of G, G’ = (V,
[image: image117.wmf]E

), where
[image: image118.wmf]E

 = {(u,v) : u,v
[image: image119.wmf]Î

 V, u
[image: image120.wmf]¹

v and (u,v)
[image: image121.wmf]Ï

 E }

as graph formed by all edges not in G

iii. Take an edge (u,v) in G’. Either u or v or both are not present in V’. Hence vertices not present in V’ form cover of G’.

[image: image122.png]

6. Subset sum Problem

· Finding what subset of a list of integers has a given sum
.

· SUBSET-SET SUM = { <s,t> : there exists a subset S’
[image: image123.wmf]Í

 S such that t =
[image: image124.wmf]'

SS

S

Î

å

· Reduce 3-CNF-SAT
[image: image125.wmf]£

 SUBSET-SUM

Assumptions

1. No clasuse contains variable and its completment (xi and
[image: image126.wmf]xi

)

2. Include all variables in every clause

e.g. Given a 3-CNF-SAT equation

 = (x1
[image: image127.wmf]Ú

[image: image128.wmf]x2

[image: image129.wmf]Ú

[image: image130.wmf]3

x

)
[image: image131.wmf]Ù

 (
[image: image132.wmf]1

x

[image: image133.wmf]Ú

[image: image134.wmf]x2

[image: image135.wmf]Ú

[image: image136.wmf]3

x

)
[image: image137.wmf]Ù

(
[image: image138.wmf]1

x

[image: image139.wmf]Ú

[image: image140.wmf]x2

[image: image141.wmf]Ú

x3)
[image: image142.wmf]Ù

 (x1
[image: image143.wmf]Ú

 x2
[image: image144.wmf]Ú

x3)

Steps

1. Add 2 numbers for each varioables and clauses.

2. Form numbers consisting of n+k digits, where n is the number of varioables and k is the number of clauses

3. Form target as a number of the form 111…444…. Where number of 1’s equal to number of variables and number of 4’s eqaul to number of clauses.

Table created for is given below.

x1
x2
x3
c1
c2
c3
c4

v1
1
0
0
1
0
0
1

v1'
1
0
0
1
1
1
1

v2
0
1
0
0
0
0
1

v2'
0
1
0
1
1
1
0

v3
0
0
1
0
0
1
1

v3'
0
0
1
1
1
0
0

S1
0
0
0
1
0
0
0

S1'
0
0
0
2
0
0
0

S2
0
0
0
0
1
0
0

S2'
0
0
0
0
2
0
0

S3
0
0
0
0
0
1
0

S3'
0
0
0
0
0
2
0

S4
0
0
0
0
0
0
1

S4'
0
0
0
0
0
0
2

Target
1
1
1
4
4
4
4

S’ can be created as :

1. If xi = 1 pick vi else vi’.

In above example select v1’, v2’, v3.

They will add 1’s to digit corresponding to variables and maximum of 3 to digits corresponding to variables.

2. Select appropriate slack Si’s to make sum as 4 for clauses.

In above example select S1, S1’, S2, S2’, S3, S4, S4’.

Hence we have S’ = { v1’, v2’, v3, S1, S1’, S2, S2’, S3, S4, S4’}

So we proved that we can reduce 3-CNF-SAT to Subset-Sum problem.

But 3-CNF-SAT is NP-Complete hence Subset-Sum problem is also NP-Complete.

– 3 –

_120492744

_120496844

_120497164.unknown

_120497484.unknown

_120497804.unknown

_120498124.unknown

_120498444.unknown

_120498764.unknown

_120499084.unknown

_120499404.unknown

_120499724.unknown

_120717392.unknown

_120717712.unknown

_120718032.unknown

_120718352.unknown

_120718672.unknown

_120718992.unknown

_120719312.unknown

_120719632.unknown

_120719952.unknown

_120720272.unknown

_120720592.unknown

_120720912.unknown

_120803412.unknown

_120803732.unknown

_120804052.unknown

_120804372.unknown

_120805012.unknown

_120805332.unknown

_120805652.unknown

_120805972.unknown

_120806292.unknown

_120869272.unknown

_120869592.unknown

_120869912

_120870232.unknown

_120870552.unknown

_120870872.unknown

_120871192.unknown

_120871512.unknown

_120871832.unknown

_120872152.unknown

_120872472.unknown

_375459932.unknown

_375460252.unknown

_375460572.unknown

_375460892.unknown

_375461212.unknown

_375461532.unknown

_375461852.unknown

_375462172.unknown

_375462492.unknown

_375462812.unknown

_375463132.unknown

_375463452.unknown

_418078816.unknown

_418079136.unknown

_418079456.unknown

_418079776.unknown

_418080096.unknown

_418080416.unknown

_418080736.unknown

_418081056.unknown

_418081376.unknown

_418081696.unknown

_418082016.unknown

_418082336.unknown

_524357732.unknown

_524358052.unknown

_524358372.unknown

_524358692.unknown

_524359012.unknown

_524359332.unknown

_524359652.unknown

_524359972.unknown

_524360292.unknown

_524360612.unknown

_524360932.unknown

_524361252.unknown

_575176808.unknown

_575177128.unknown

_575177448.unknown

_575177768.unknown

_575178088.unknown

_575178408.unknown

_575178728.unknown

_575179048.unknown

_575179368.unknown

_575179688.unknown

_575180008.unknown

_575180328.unknown

_623018092.unknown

_623018412.unknown

_623018732.unknown

_623019052.unknown

_623019372.unknown

_623019692.unknown

_623020012.unknown

_623020332.unknown

_623020652.unknown

_623020972.unknown

_623021612.unknown

_713363568.unknown

_713363888.unknown

_713364208

_713364528.unknown

_713364848.unknown

_713365168.unknown

_713365488.unknown

_713365808.unknown

_713366128.unknown

_713366448.unknown

_713366768.unknown

_713367088.unknown

_755941492.unknown

_755941812.unknown

_755942132

_755942772.unknown

_755943092.unknown

_755943412.unknown

_755943732.unknown

_755944052.unknown

_755944372.unknown

_755944692.unknown

_755945012.unknown

_835649656.unknown

_835649976.unknown

_835650296.unknown

_835650616.unknown

_835650936.unknown

_835651256.unknown

_835651576.unknown

_835651896.unknown

_835652216.unknown

_835652536.unknown

_835652856.unknown

_835653176.unknown

_862277756.unknown

_862278076.unknown

_120868952.unknown

_120806932.unknown

_120806612.unknown

_120804692.unknown

_70687292.unknown

