

Programs and Recursive Functions

Church’s Thesis

· Collection of functions computed by an algorithm is the same as that computed by a Turing Machine

· Computer programs look like algorithm. Hence functions computed by computer is same as that by Turing Machine.

· Implemented by Universal Turing Machine

 Complexity Classes

 P Problem

· Number of steps is bounded by a polynomial.

· Produce correct answer for any input string of length n in at most nk steps, where k is s constant independent of n.

e.g., Merge sort, Quick sort etc.

NP Problem

· Verifiable in polynomial time by a nondeterministic Turing machine. (A non deterministic Turing machine is a "parallel" Turing machine which can take many computational paths simultaneously, with the restriction that the parallel Turing machines cannot communicate.)

· A P-problem is always also NP. If a problem is known to be NP, and a solution to the problem is somehow known, then demonstrating the correctness of the solution can always be reduced to a single P verification.

· If P and NP are not equivalent, then the solution of NP-problems requires (in the worst case) an exhaustive search.

NP- hard

· An algorithm for solving the problem can be translated into one for solving any other NP-problem.

NP-Complete

· A problem which is both NP and NP-hard.

· Hardest of NP problems.

NP Complete Examples

1. Circuit Satisfiability

Given a Boolean combinational circuit composed of AND, OR and NOT gates, is the circuit satisfiable (output is 1).

CIRCUIT-SAT = { <C> : C is a satisfiable boolean combinational circuit.>

[image: image1.png]2
7

S

JLL

The above problem cannot be solved in polynomial time but can be verified. Hence it belong to NP category.

2. Formula Satisfiablility

· Given a boolean formula circuit, is the formula satisfiable (output is 1).

· Given right certificates, can be verified in polynomial time. Hence problem is NP.

· To prove this to be NP-complete, reduce CIRCUIT-SAT to this. CIRCUIT-SAT
[image: image2.wmf]£

p FORMULA-SAT

Steps

i. Name all output lines.

[image: image3.png]i

ii. Find AND of all output lines.

 = x10 of
[image: image4.wmf]Ù

 (x4
[image: image5.wmf]«

 EMBED MathType 5.0 Equation [image: image6.wmf]Ø

x3)

[image: image7.wmf]Ù

 (x5
[image: image8.wmf]«

 (x1
[image: image9.wmf]Ú

x2))

[image: image10.wmf]Ù

 (x6
[image: image11.wmf]«

 EMBED MathType 5.0 Equation [image: image12.wmf]Ø

x4)

[image: image13.wmf]Ù

 (x7
[image: image14.wmf]«

 (x1
[image: image15.wmf]Ù

x2
[image: image16.wmf]Ù

 x4))

[image: image17.wmf]Ù

 (x8
[image: image18.wmf]«

 (x5
[image: image19.wmf]Ú

x6))

[image: image20.wmf]Ù

 (x9
[image: image21.wmf]«

 (x6
[image: image22.wmf]Ú

x7))

[image: image23.wmf]Ù

 (x10
[image: image24.wmf]«

 (x7
[image: image25.wmf]Ù

x8
[image: image26.wmf]Ù

 x9))

3. 3 CNF Satisfiability

· Given a boolean formula is in CNF, if it ie expressed as an AND of clauses, each of which is the OR of one or more literals. A boolean formula is in 3-CNF, if each clause has exactly three literals. And satisfiable if output is 1.

· Given right certificates, can be verified in polynomial time. Hence problem is NP.

· To prove this to be NP-complete, reduce FORMULA-SAT to this. FORMULA-SAT
[image: image27.wmf]£

p 3-CNF-SAT

Steps

 = ((x1
[image: image28.wmf]®

x2)
[image: image29.wmf]Ú

 EMBED MathType 5.0 Equation [image: image30.wmf]Ø

((
[image: image31.wmf]Ø

x1
[image: image32.wmf]«

x3)
[image: image33.wmf]Ú

x4))
[image: image34.wmf]Ù

 EMBED MathType 5.0 Equation [image: image35.wmf]Ø

x2

i. Create parse tree

[image: image36.png]o

ii. Create truth table

Find the truth value for each output line. For example, truth value for the first line can be written as

1’ = y1
[image: image37.wmf]«

 (y2
[image: image38.wmf]Ú

 EMBED MathType 5.0 Equation [image: image39.wmf]Ø

x2)

y1
y2
x2
y1
[image: image40.wmf]«

 (y2
[image: image41.wmf]Ú

 EMBED MathType 5.0 Equation [image: image42.wmf]Ø

x2)

1
1
1
0

1
1
0
1

1
0
1
0

1
0
0
0

0
1
1
1

0
1
0
0

1
0
1
1

0
0
0
1

1’’ = (y1
[image: image43.wmf]Ù

y2
[image: image44.wmf]Ù

 x2)
[image: image45.wmf]Ú

 (y1
[image: image46.wmf]Ù

 EMBED MathType 5.0 Equation [image: image47.wmf]Ø

y2
[image: image48.wmf]Ù

 x2)
[image: image49.wmf]Ú

 (y1
[image: image50.wmf]Ù

 EMBED MathType 5.0 Equation [image: image51.wmf]Ø

y2
[image: image52.wmf]Ù

 EMBED MathType 5.0 Equation [image: image53.wmf]Ø

x2)
[image: image54.wmf]Ú

 (
[image: image55.wmf]Ø

y1
[image: image56.wmf]Ù

y2
[image: image57.wmf]Ù

 EMBED MathType 5.0 Equation [image: image58.wmf]Ø

x2)

Applying de Morgan’s law

1’’’ = (
[image: image59.wmf]Ø

y1
[image: image60.wmf]Ú

 EMBED MathType 5.0 Equation [image: image61.wmf]Ø

y2
[image: image62.wmf]Ú

 EMBED MathType 5.0 Equation [image: image63.wmf]Ø

x2)
[image: image64.wmf]Ù

 (
[image: image65.wmf]Ø

y1
[image: image66.wmf]Ú

y2
[image: image67.wmf]Ú

[image: image68.wmf]Ø

x2)
[image: image69.wmf]Ù

 (
[image: image70.wmf]Ø

y1
[image: image71.wmf]Ú

y2
[image: image72.wmf]Ú

x2)
[image: image73.wmf]Ù

 (y1
[image: image74.wmf]Ú

 EMBED MathType 5.0 Equation [image: image75.wmf]Ø

y2
[image: image76.wmf]Ú

x2)

Similarly find all i’’’s and find the AND of all i’’’s.

iii. If all clauses has three distinct literals, select all. Else

a. If all clause contain two distinct literal, introduce new literal p. Add two more clauses

(l1
[image: image77.wmf]Ú

l2
[image: image78.wmf]Ú

p) and (l1
[image: image79.wmf]Ú

l2
[image: image80.wmf]Ú

 EMBED MathType 5.0 Equation [image: image81.wmf]Ø

p)

b. If all clause contain only one literal, introduce two new literals p and q. Add four more clauses

(l1
[image: image82.wmf]Ú

p
[image: image83.wmf]Ú

q), (l1
[image: image84.wmf]Ú

 EMBED MathType 5.0 Equation [image: image85.wmf]Ø

p
[image: image86.wmf]Ú

q), (l1
[image: image87.wmf]Ú

p
[image: image88.wmf]Ú

 EMBED MathType 5.0 Equation [image: image89.wmf]Ø

q)and (l1
[image: image90.wmf]Ú

 EMBED MathType 5.0 Equation [image: image91.wmf]Ø

p
[image: image92.wmf]Ú

 EMBED MathType 5.0 Equation [image: image93.wmf]Ø

q)

4. Clique problem

· Clique in an undirected graph G = (V, E) is a subset V’
[image: image94.wmf]Í

 V of vertices, each pair of which is connected by an edge in E. In other words, a clique is a complete graph. The size of a clique is the number of vertices it contains. The clique problem is the optimization problem of finding a clique of maximum size in a given graph.

· CLIQUE = { <G, k> : G is a graph with a clique of size k }

· To prove this to be NP-complete, reduce 3-CNF-SAT to this. 3-CNF-SAT
[image: image95.wmf]£

CLIQUE.

Steps

 = (x1
[image: image96.wmf]Ú

 EMBED MathType 5.0 Equation [image: image97.wmf]Ø

x2
[image: image98.wmf]Ú

 EMBED MathType 5.0 Equation [image: image99.wmf]Ø

x3)
[image: image100.wmf]Ù

 (
[image: image101.wmf]Ø

x1
[image: image102.wmf]Ú

x2
[image: image103.wmf]Ú

 x3)
[image: image104.wmf]Ù

 (x1
[image: image105.wmf]Ú

x2
[image: image106.wmf]Ú

x3)
 x1 = 0, x2 = 0, x3 =1

i. Let  be a Boolean expression with k clauses. Construct a graph G such that  is satisfiable if and only if graph has a clique of size k.

ii. Graph can be constructed as

a. For each clause Cr = (l1r
[image: image107.wmf]Ú

 l2r
[image: image108.wmf]Ú

 l3r) in , place a triple of vertices v1r, v2r , v3r into V. Put an edge between two vertices if both of the following hold.

· vir and vjr are in different triples, that is, r
[image: image109.wmf]¹

s, and

· their corresponding literals are consistent, that is, lir is not the negation of ljs

[image: image110.png]

iii. Each Cr contains at least one literal lir that is assigned a, each such literal corresponds to vertex vir. Pick one such literal from each clause yields a set V’ of k vertices.

5. Vertex cover problem

· Vertex cover in an undirected graph G = (V, E) is a subset V’
[image: image111.wmf]Í

 V such that if (u,v)
[image: image112.wmf]Î

 V’, then u
[image: image113.wmf]Î

 V’ or v
[image: image114.wmf]Î

 V’ or both. The clique vertex cover problem is to find a vertex cover of minimum size in a given graph.

· VERTEX-COVER = { <G, k> : G has a vertex cover of size k }

· To prove this to be NP-complete, reduce 3- CLIQUE to this. Reduce CLIQUE
[image: image115.wmf]£

 VERTEX-COVER

Steps

i. Given G = (V, E), V’
[image: image116.wmf]Í

 V where V’ is a clique.

ii. Find complement of G, G’ = (V,
[image: image117.wmf]E

), where
[image: image118.wmf]E

 = {(u,v) : u,v
[image: image119.wmf]Î

 V, u
[image: image120.wmf]¹

v and (u,v)
[image: image121.wmf]Ï

 E }

as graph formed by all edges not in G

iii. Take an edge (u,v) in G’. Either u or v or both are not present in V’. Hence vertices not present in V’ form cover of G’.

[image: image122.png]eeeeeeeeee
cccccc

6. Subset sum Problem

· Finding what subset of a list of integers has a given sum
.

· SUBSET-SET SUM = { <s,t> : there exists a subset S’
[image: image123.wmf]Í

 S such that t =
[image: image124.wmf]'

SS

S

Î

å

· Reduce 3-CNF-SAT
[image: image125.wmf]£

 SUBSET-SUM

Assumptions

1. No clasuse contains variable and its completment (xi and
[image: image126.wmf]xi

)

2. Include all variables in every clause

e.g. Given a 3-CNF-SAT equation

 = (x1
[image: image127.wmf]Ú

[image: image128.wmf]x2

[image: image129.wmf]Ú

[image: image130.wmf]3

x

)
[image: image131.wmf]Ù

 (
[image: image132.wmf]1

x

[image: image133.wmf]Ú

[image: image134.wmf]x2

[image: image135.wmf]Ú

[image: image136.wmf]3

x

)
[image: image137.wmf]Ù

(
[image: image138.wmf]1

x

[image: image139.wmf]Ú

[image: image140.wmf]x2

[image: image141.wmf]Ú

x3)
[image: image142.wmf]Ù

 (x1
[image: image143.wmf]Ú

 x2
[image: image144.wmf]Ú

x3)

Steps

1. Add 2 numbers for each varioables and clauses.

2. Form numbers consisting of n+k digits, where n is the number of varioables and k is the number of clauses

3. Form target as a number of the form 111…444…. Where number of 1’s equal to number of variables and number of 4’s eqaul to number of clauses.

Table created for  is given below.

x1
x2
x3
c1
c2
c3
c4

v1
1
0
0
1
0
0
1

v1'
1
0
0
1
1
1
1

v2
0
1
0
0
0
0
1

v2'
0
1
0
1
1
1
0

v3
0
0
1
0
0
1
1

v3'
0
0
1
1
1
0
0

S1
0
0
0
1
0
0
0

S1'
0
0
0
2
0
0
0

S2
0
0
0
0
1
0
0

S2'
0
0
0
0
2
0
0

S3
0
0
0
0
0
1
0

S3'
0
0
0
0
0
2
0

S4
0
0
0
0
0
0
1

S4'
0
0
0
0
0
0
2

Target
1
1
1
4
4
4
4

S’ can be created as :

1. If xi = 1 pick vi else vi’.

In above example select v1’, v2’, v3.

They will add 1’s to digit corresponding to variables and maximum of 3 to digits corresponding to variables.

2. Select appropriate slack Si’s to make sum as 4 for clauses.

In above example select S1, S1’, S2, S2’, S3, S4, S4’.

Hence we have S’ = { v1’, v2’, v3, S1, S1’, S2, S2’, S3, S4, S4’}

So we proved that we can reduce 3-CNF-SAT to Subset-Sum problem.

But 3-CNF-SAT is NP-Complete hence Subset-Sum problem is also NP-Complete.

– 3 –

_120492744

_120496844

_120497164.unknown

_120497484.unknown

_120497804.unknown

_120498124.unknown

_120498444.unknown

_120498764.unknown

_120499084.unknown

_120499404.unknown

_120499724.unknown

_120717392.unknown

_120717712.unknown

_120718032.unknown

_120718352.unknown

_120718672.unknown

_120718992.unknown

_120719312.unknown

_120719632.unknown

_120719952.unknown

_120720272.unknown

_120720592.unknown

_120720912.unknown

_120803412.unknown

_120803732.unknown

_120804052.unknown

_120804372.unknown

_120805012.unknown

_120805332.unknown

_120805652.unknown

_120805972.unknown

_120806292.unknown

_120869272.unknown

_120869592.unknown

_120869912

_120870232.unknown

_120870552.unknown

_120870872.unknown

_120871192.unknown

_120871512.unknown

_120871832.unknown

_120872152.unknown

_120872472.unknown

_375459932.unknown

_375460252.unknown

_375460572.unknown

_375460892.unknown

_375461212.unknown

_375461532.unknown

_375461852.unknown

_375462172.unknown

_375462492.unknown

_375462812.unknown

_375463132.unknown

_375463452.unknown

_418078816.unknown

_418079136.unknown

_418079456.unknown

_418079776.unknown

_418080096.unknown

_418080416.unknown

_418080736.unknown

_418081056.unknown

_418081376.unknown

_418081696.unknown

_418082016.unknown

_418082336.unknown

_524357732.unknown

_524358052.unknown

_524358372.unknown

_524358692.unknown

_524359012.unknown

_524359332.unknown

_524359652.unknown

_524359972.unknown

_524360292.unknown

_524360612.unknown

_524360932.unknown

_524361252.unknown

_575176808.unknown

_575177128.unknown

_575177448.unknown

_575177768.unknown

_575178088.unknown

_575178408.unknown

_575178728.unknown

_575179048.unknown

_575179368.unknown

_575179688.unknown

_575180008.unknown

_575180328.unknown

_623018092.unknown

_623018412.unknown

_623018732.unknown

_623019052.unknown

_623019372.unknown

_623019692.unknown

_623020012.unknown

_623020332.unknown

_623020652.unknown

_623020972.unknown

_623021612.unknown

_713363568.unknown

_713363888.unknown

_713364208

_713364528.unknown

_713364848.unknown

_713365168.unknown

_713365488.unknown

_713365808.unknown

_713366128.unknown

_713366448.unknown

_713366768.unknown

_713367088.unknown

_755941492.unknown

_755941812.unknown

_755942132

_755942772.unknown

_755943092.unknown

_755943412.unknown

_755943732.unknown

_755944052.unknown

_755944372.unknown

_755944692.unknown

_755945012.unknown

_835649656.unknown

_835649976.unknown

_835650296.unknown

_835650616.unknown

_835650936.unknown

_835651256.unknown

_835651576.unknown

_835651896.unknown

_835652216.unknown

_835652536.unknown

_835652856.unknown

_835653176.unknown

_862277756.unknown

_862278076.unknown

_120868952.unknown

_120806932.unknown

_120806612.unknown

_120804692.unknown

_70687292.unknown

