

Programs and Recursive Functions

Church’s Thesis

· Collection of functions computed by an algorithm is the same as that computed by a Turing Machine

· Computer programs look like algorithm. Hence functions computed by computer is same as that by Turing Machine.

· Implemented by Universal Turing Machine

   Complexity Classes

    P Problem

· Number of steps is bounded by a polynomial.

· Produce correct answer for any input string of length n in at most nk steps, where k is s constant independent of n.

e.g., Merge sort, Quick sort etc.

NP Problem

· Verifiable in polynomial time by a nondeterministic Turing machine. (A non deterministic Turing machine is a "parallel" Turing machine which can take many computational paths simultaneously, with the restriction that the parallel Turing machines cannot communicate.) 

· A P-problem is always also NP. If a problem is known to be NP, and a solution to the problem is somehow known, then demonstrating the correctness of the solution can always be reduced to a single P verification. 

· If P and NP are not equivalent, then the solution of NP-problems requires (in the worst case) an exhaustive search. 

NP- hard

· An algorithm for solving the problem can be translated into one for solving any other NP-problem.

NP-Complete

· A problem which is both NP and NP-hard.

· Hardest of NP problems.

NP Complete Examples

1. Circuit Satisfiability

Given a Boolean combinational circuit composed of AND, OR and NOT gates, is the circuit satisfiable (output is 1).

CIRCUIT-SAT = { <C> : C is a satisfiable boolean combinational circuit.>
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The above problem cannot be solved in polynomial time but can be verified. Hence it belong to NP category.

2. Formula Satisfiablility

· Given a boolean formula circuit, is the formula satisfiable (output is 1).

· Given right certificates, can be verified in polynomial time. Hence problem is NP.

· To prove this to be NP-complete, reduce CIRCUIT-SAT to this. CIRCUIT-SAT 
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p FORMULA-SAT

Steps

i. Name all output lines.
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ii. Find AND of all output lines.

 = x10 of   
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3. 3 CNF Satisfiability

· Given a boolean formula is in CNF, if it ie expressed as an AND of clauses, each of which is the OR of one or more literals. A boolean formula is in 3-CNF, if each clause has exactly three literals. And satisfiable if output is 1.

· Given right certificates, can be verified in polynomial time. Hence problem is NP.

· To prove this to be NP-complete, reduce FORMULA-SAT to this. FORMULA-SAT 
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p 3-CNF-SAT

Steps

 = ((x1
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i. Create parse tree
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ii. Create truth table

Find the truth value for each output line. For example, truth value for the first line can be written as


1’ = y1 
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1’’ = (y1 
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Applying de Morgan’s law

1’’’ = (
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Similarly find all i’’’s and find the AND of all i’’’s.

iii. If all clauses has three distinct literals, select all.  Else

a. If all clause contain two distinct literal, introduce new literal p. Add two more clauses 


(l1 
[image: image77.wmf]Ú

l2 
[image: image78.wmf]Ú

p) and (l1 
[image: image79.wmf]Ú

l2 
[image: image80.wmf]Ú



 EMBED MathType 5.0 Equation [image: image81.wmf]Ø

p)

b. If all clause contain only one literal, introduce two new literals p and q. Add four more clauses 
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4. Clique problem

· Clique in an undirected graph G = (V, E) is a subset V’ 
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 V of vertices, each pair of which is connected by an edge in E. In other words, a clique is a complete graph. The size of a clique is the number of vertices it contains. The clique problem is the optimization problem of finding a clique of maximum size in a given graph.

· CLIQUE = { <G, k> : G is a graph with a clique of size k }

· To prove this to be NP-complete, reduce 3-CNF-SAT to this. 3-CNF-SAT 
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CLIQUE.

Steps

 = ( x1 
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   x1 =  0,  x2 = 0,  x3 =1

i. Let  be a Boolean expression with k clauses. Construct a graph G such that  is satisfiable if and only if graph has a clique of size k.

ii. Graph can be constructed as 

a. For each clause Cr = (l1r 
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 l2r 
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 l3r) in , place a triple of vertices v1r, v2r , v3r into V. Put an edge between two vertices if both of the following hold.

· vir and vjr are in different triples, that is, r
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s, and 

· their corresponding literals are consistent, that is, lir  is not the negation of ljs


[image: image110.png]



iii. Each Cr contains at least one literal lir  that is assigned a, each such literal corresponds to vertex vir. Pick one such literal from each clause yields a set V’ of k vertices.

5. Vertex cover problem

· Vertex cover in an undirected graph G = (V, E) is a subset V’ 
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 V such that if (u,v) 
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 V’,    then u 
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 V’ or v 
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 V’ or both. The clique vertex cover problem is to find a vertex cover of minimum size in a given graph.

· VERTEX-COVER = { <G, k> : G has a vertex cover of size k }

· To prove this to be NP-complete, reduce 3- CLIQUE  to this. Reduce CLIQUE 
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 VERTEX-COVER

Steps

i. Given G = (V, E), V’ 
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 V where V’ is a clique.

ii. Find complement of G, G’ = (V,
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), where 
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 = {(u,v) : u,v 
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 V, u 
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v and (u,v) 
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 E }

as graph formed by all edges not in G

iii. Take an edge (u,v) in G’. Either u or v or both are not present in V’. Hence vertices not present in V’ form cover of G’.


[image: image122.png]eeeeeeeeee
cccccc






6. Subset sum Problem

· Finding what subset of a list of integers has a given sum
.

· SUBSET-SET SUM = { <s,t> :  there exists a subset S’
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 S such that t = 
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· Reduce 3-CNF-SAT 
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 SUBSET-SUM

Assumptions

1. No clasuse contains variable and its completment ( xi and 
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)

2. Include all variables in every clause


e.g. Given a 3-CNF-SAT equation 


 = (x1 
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Steps

1. Add 2 numbers for each varioables and clauses.

2. Form numbers consisting of n+k digits, where n is the number of varioables and k is the number of clauses

3. Form target as a number of the form 111…444…. Where number of 1’s equal to number of variables and number of 4’s eqaul to number of clauses.

Table created for  is given below.


x1
x2
x3
c1
c2
c3
c4

v1
1
0
0
1
0
0
1

v1'
1
0
0
1
1
1
1

v2
0
1
0
0
0
0
1

v2'
0
1
0
1
1
1
0

v3
0
0
1
0
0
1
1

v3'
0
0
1
1
1
0
0

S1
0
0
0
1
0
0
0

S1'
0
0
0
2
0
0
0

S2
0
0
0
0
1
0
0

S2'
0
0
0
0
2
0
0

S3
0
0
0
0
0
1
0

S3'
0
0
0
0
0
2
0

S4
0
0
0
0
0
0
1

S4'
0
0
0
0
0
0
2

Target
1
1
1
4
4
4
4

S’ can be created as :

1. If xi = 1 pick vi else vi’. 

In above example select v1’, v2’, v3.

They will add 1’s to digit corresponding to variables and maximum of 3 to digits corresponding to variables.

2. Select appropriate slack Si’s to make sum as 4 for clauses.

In above example select S1, S1’, S2, S2’, S3, S4, S4’. 

Hence we have S’ = { v1’, v2’, v3, S1, S1’, S2, S2’, S3, S4, S4’}


So we proved that we can reduce 3-CNF-SAT to Subset-Sum problem.         

But 3-CNF-SAT is NP-Complete hence Subset-Sum problem is also NP-Complete.
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